

Undergraduate Mathematics Student Pathways: Data and Tools

TPSE Department Chairs Conversations

March 3, 2022

Nimmi Kannankutty, Senior Advisor

Office of the Director

National Science Foundation

Overview

Context and Definitions

Major Trends

Pe-college achievement

Undergraduate Indicators

Workforce Characteristics

Tools to Explore the Data

Human Resources Data Continuum

Pre-college Undergraduate education degrees degrees Undergraduate enrollments Undergraduate enrollments Graduate enrollments Workforce

At each stage in this continuum, we are trying to understand:

- How many people are in this stage?
- What are their demographic characteristics?
- What are the short-term and long-term trends at that stage?
- How does performance at one stage relate to other stages?

STEM Higher Education: Then and Now

1960s

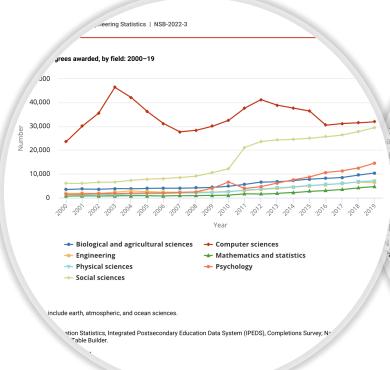
- Disciplinary focus
- U.S. a world leader in higher education
- Students predominantly white and majority male
- Predominantly U.S. citizen students and postdocs
- Public and private non-profit campusbased degree programs

2020s

- Greater interdisciplinary focus
- Growth in higher education abroad
- Greater racial/ethnic and gender diversity
- Increase in foreign students and foreign postdocs
- Growth of for-profit institutions and online programs

STEM Workforce: Then and Now

1960s


- Workers in S&E occupations a small proportion of total workforce
- Individuals with STEM degrees and skills primarily work in STEM occupations
- Individuals primarily work within a single discipline
- STEM workforce primary U.S.-born/white/male
- U.S. a leader in attracting STEM talent from all over the world
- Mobility of STEM workers (across sectors, jobs, economies) is limited

2020s

- Workers in S&E occupations larger proportion of total workforce
- Those with S&E degrees and skills work in a wide variety of STEM and non-STEM occupations
- Great increase in collaborative and multidisciplinary work
- Increase in proportion of foreignborn/minority/female workers
- Greater competition from other countries in attracting STEM talent
- STEM workers making frequent moves across sectors, jobs, economies

What are the trends in bachelor's degree attainment in math?

arded, by sex, field, citizenship, ethnicity,

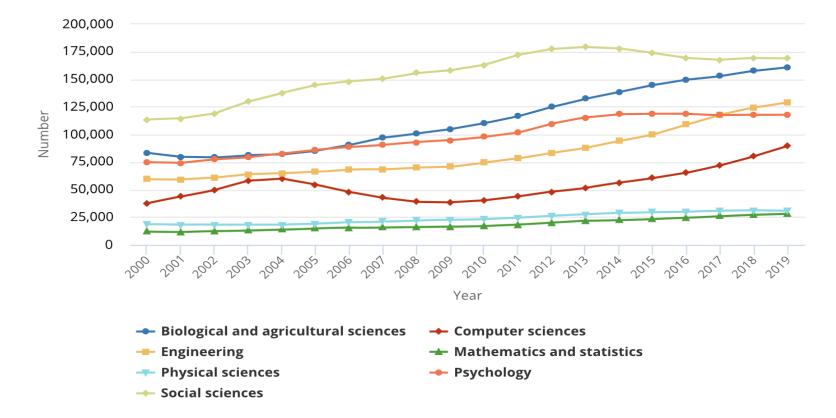
ethnicity, and race	2008	2009	2010	2011	26	
	1,580,413	1,619,028	1,668,227	1,734,229	1,811,404	
en and permanent resident	1,536,007	1,573,094	1,620,629	1,681,535	1,751,821	
nic or Latino ^a	131,695	137,746	147,205	159,936	176,719	
ispanic or Latino	1,404,312	1,435,348	1,473,424	1,521,599	1,575,102	
merican Indian or Alaska ative	10,768	11,407	11,485	11,126	10,740	
ian	na	na	na	109,009	113,736	
sian or Pacific Islander ^b	102,301	105,246	109,022	na	na	
ack or African American	142,576	145,988	152,404	161,005	172,869	
ative Hawaiian or Other acific Islander	na	na	na	4,205	4,546	
hite	1,051,236	1,069,016	1,082,145	1,102,792	1,133,084	
e than one race ^c	na	na	na	19,451	25,47′	
or unknown race and	97,431	103,691	118,368	114,011	114	
4	44,406	45,934	47,598	52,694		
	496,168	505,435	525,374	554,365		
rent	479,642	488,380	507,143	52		

Custom Tables

Compiled Data and Analysis

Compiled, Disaggregated Data

43,018



S&E bachelor's degrees awarded, by field: 2000-19

Example #1:

Trends in Bachelor's Degrees in Math

Compiled Data and Analysis

Note(s):

Physical sciences include earth, atmospheric, and ocean sciences.

Source(s):

Figure HED-8

National Center for Education Statistics, Integrated Postsecondary Education Data System (IPEDS), Completions Survey; National Center for Science and Engineering Statistics, Table Builder.

Science and Engineering Indicators

Example #1: Trends in Bachelor's Degrees in Math Compiled Data and Analysis

Science and Engineering Indicators

A general starting point for access to S&T data and analysis

- Biennial summary report produced for the President and Congress to report on
 - the state of S&E in the United States

A federal statistical agency with accessible tools

- Produced by the <u>National Center for Science and Engineering Statistics</u>
- Supplemented with in-depth topical reports

Higher Education in Science and Engineering

A biennial report focused on trends in STEM higher ed

Undergraduate Degree Awards

Specific section on undergraduate degree trends

Example #2:

Trends in Bachelor's Degrees in Math

Compiled
Disaggregated
Data

Table 5-3

Bachelor's degrees awarded, by sex, field, citizenship, ethnicity, and race: 2008–18

(Number)								
Sex, field, citizenship, ethnicity, and race	2008			2018			2008 - 2018 Change Female	
	Total	Female	Male	Total	Female	Male	Number	Chng in %
Mathematics and statistics	15,841	6,957	8,884	27,161	11,490	15,671	4,533	-2%
U.S. citizen and permanent resident	15,079	6,646	8,433	22,356	9,286	13,070	2,640	-3%
Hispanic or Latino ^a	924	421	503	2,556	1,077	1,479	656	-3%
Not Hispanic or Latino	14,155	6,225	7,930	19,800	8,209	11,591	1,984	-3%
American Indian or Alaska Native	73	25	48	61	31	30	6	17%
Asian or Pacific Islanderb	1,512	652	860	3,227	1,318	1,909	666	-2%
Black or African American	796	399	397	1,089	517	572	118	-3%
White	10,875	4,806	6,069	13,876	5,710	8,166	904	-3%
More than one race ^c	na	na	na	823	349	474	na	na
Other or unknown race and ethnicity	899	343	556	724	284	440	-59	1%
Temporary resident	762	311	451	4,805	2,204	2,601	1,893	5%

Source(s):

Department of Education, National Center for Education Statistics, Integrated Postsecondary Education Data System, Completions Survey, unrevised provisional release data, accessed 14 January 2020.

Example #2: Trends in Bachelor's Degrees in Math Compiled, Disaggregated Data

A general starting point for STEM diversity data trends

- Women, Minorities and Persons with Disabilities in Science and Engineering (WMPD)
 - Biennial summary report on the status of underrepresented groups in STEM
 - Produced by the <u>National Center for Science and Engineering Statistics</u>
 - Understanding Diversity in STEM Webinar
- Analysis
- Detailed data tables
 - Degrees, Institutions, Sources of Support

Analysis and data on all parts of the continuum: US population, enrollments, degrees, postdocs, employment

A tutorial on using the WPMD

Specific section on undergraduate degree trends by demographic characteristics

Example #3:

Trends in Bachelor's Degrees in Math

Custom Tables

Mathematics and statistics bachelor's degrees awarded at UCLA, by sex, field, citizenship, ethnicity, and race: 2008 and 2018

	2008			2018			2008 - 2018 Change Female	
Sex, field, citizenship, ethnicity, and race								
	Total	Female	Male	Total	Female	Male	Number	% Change
Mathematics and statistics	219	89	130	546	237	309	148	3%
U.S. citizen and permanent resident	196	80	116	342	139	203	59	0%
Hispanic or Latinoa	23	9	14	40	15	25	6	-2%
Not Hispanic or Latino	173	71	102	302	124	178	53	0%
American Indian or Alaska Native	0	0	0	0	0	0	na	na
Asian	96	43	53	177	80	97	37	0%
Black or African American	5	2	3	4	1	3	-1	-15%
White	61	25	36	94	36	58	11	-3%
More than one race ^c	na	na	na	18	5	13	na	na
Other or unknown race and ethnicity	11	1	10	9	2	7	1	13%
Temporary resident	23	9	14	204	98	106	89	9%

SOURCE: Department of Education, National Center for Education Statistics, Integrated Postsecondary Education Data System, Completions Survey, unrevised provisional release data.

Example #3: Trends in Bachelor's Degrees in Math Custom Tables

National Center for Science and Engineering Statistics

Multiple tools for different types of data

Explore Data

Custom table builder

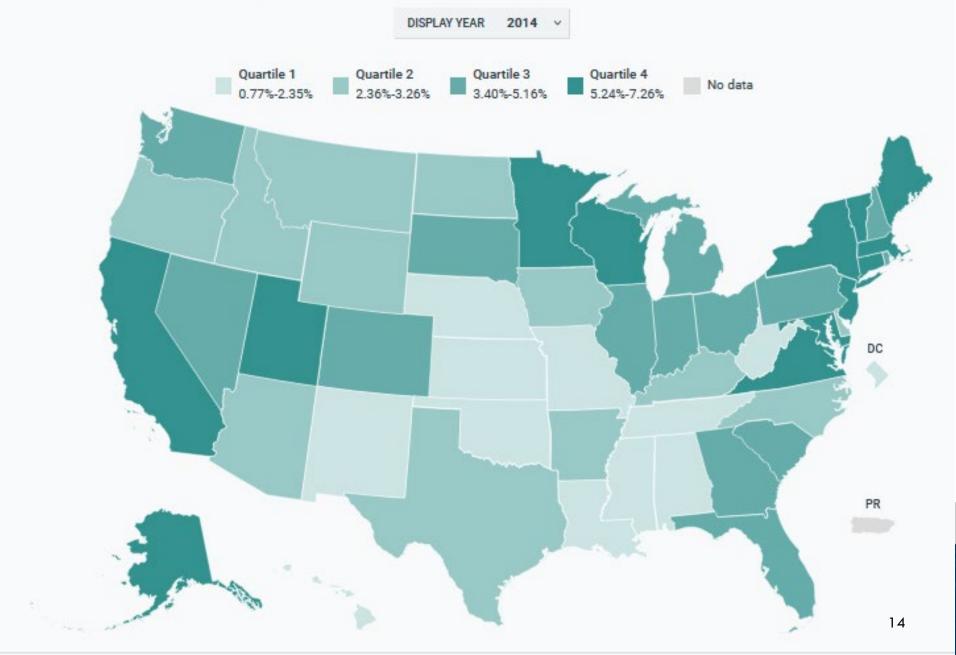
- Table Builder
- NCSES Data Tools Media Archive

Online tutorial for table builder and chart builder

• IPEDS Completions

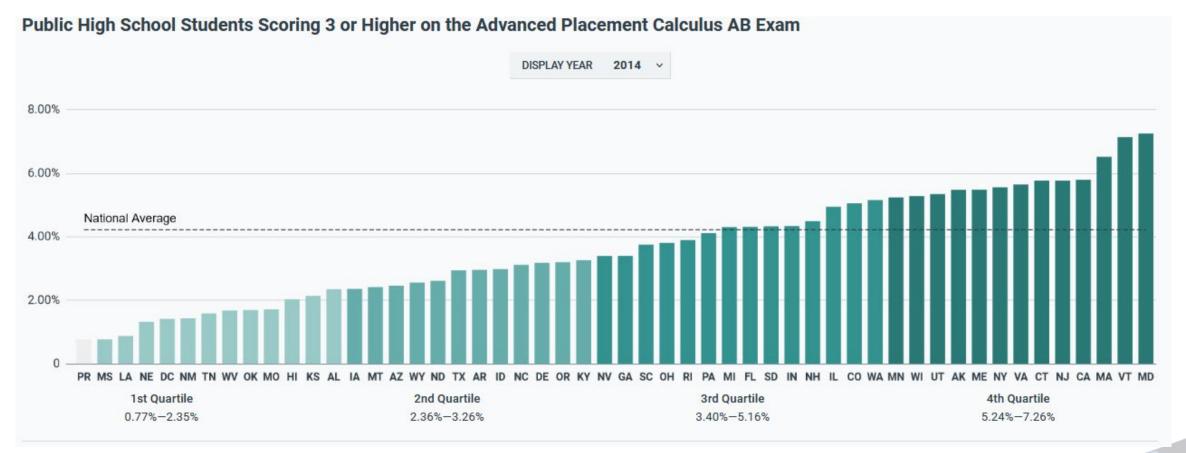
Dept. of Ed database with institutional data

What are the AP Calculus outcomes of US students? How does that that vary geographically?



Public High School Students Scoring 3 or Higher on the Advanced Placement Calculus AB Exam

Example #4:


AP Calculus
Outcomes

Interactive Compiled Data

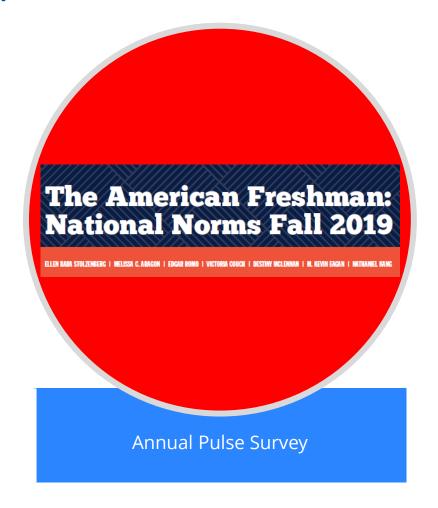
Example #5: AP Calculus Outcomes Interactive Compiled Data

Examples #5 and #6: AP Calculus Outcomes Interactive Compiled Data

Science and Engineering Indicators

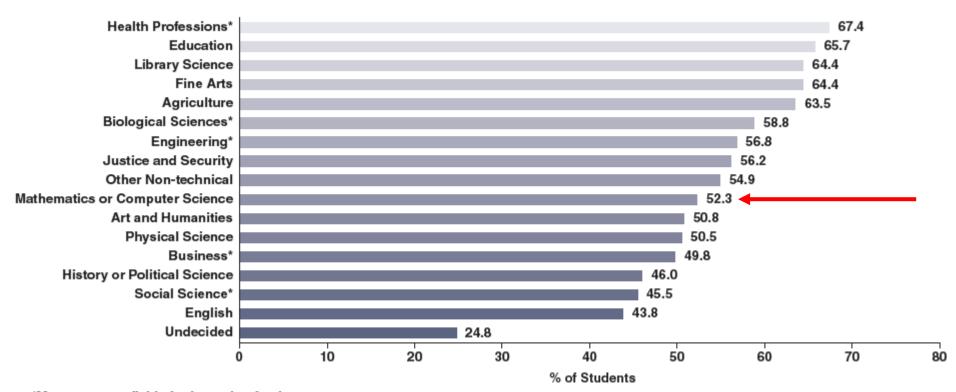
Interactive Data Tool

- State Data Tool
 - Compare Indicators or Compare States
 - Compare Indicators
 - Elementary and Secondary Education
 - Public High School Students Scoring 3 or Higher on the Advanced
 Placement Calculus AB Exam

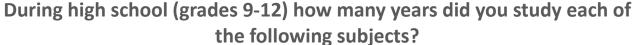

Two ways of comparing the data

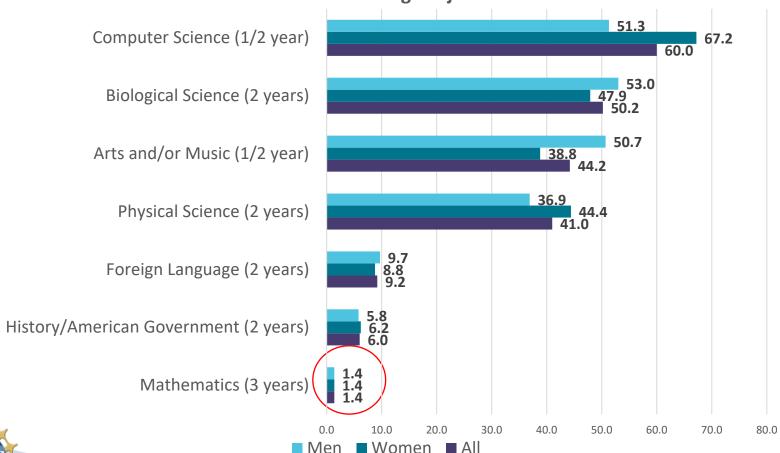
One of multiple types of people and R&D indicators

National comparison of achievement, by state


What are the characteristics of incoming freshman, with respect to math preparation or intention to major in math?

Example #6: Selected Statistics from Freshmen National Norms (2019)


Figure 3. Importance of Academic Reputation of Intended Major in College Choice, by Major Field (% Very important)



*Most common fields for incoming freshmen

Example #7: Selected Statistics from Freshmen National Norms (2019)

Intending to Major in Math

Men: 1.2% Women: 1.0%

Self-assessment – I am in the "highest 10%" or "above average" in mathematical ability among my peers

Men: 53.9% Women: 36.4%

Examples #6 and #7: Annual national data from the Freshman National Norms Survey

The Freshman Survey – National Norms

Annual pulse survey

- UCLA Higher Education Research Institute
- Annual pulse survey of incoming, first-time, first-year students
- Request data or custom reports

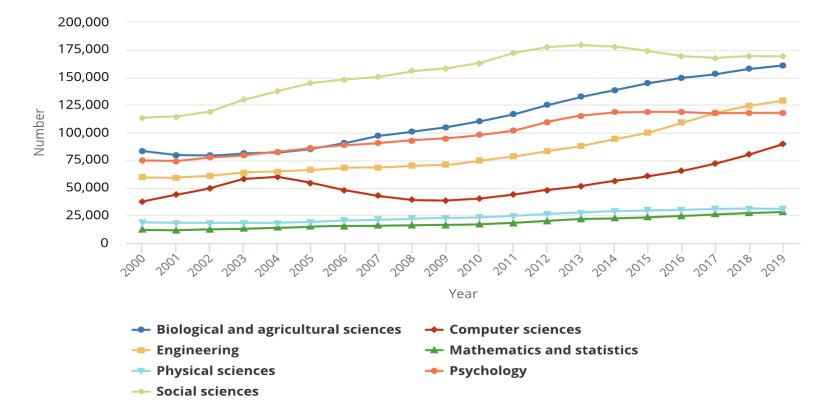
Institutional data is available

Specific data about all

students'

- Demographics of Incoming Students
- Math-related Data

preparedness


- Pre-college math course-taking
- Intention to major in math, compared to other fields
- Importance of choice of school, by major
- Importance of engagement with professors

S&E bachelor's degrees awarded, by field: 2000-19

Example #1:

Trends in Bachelor's Degrees in Math

Compiled Data and Analysis

Note(s)

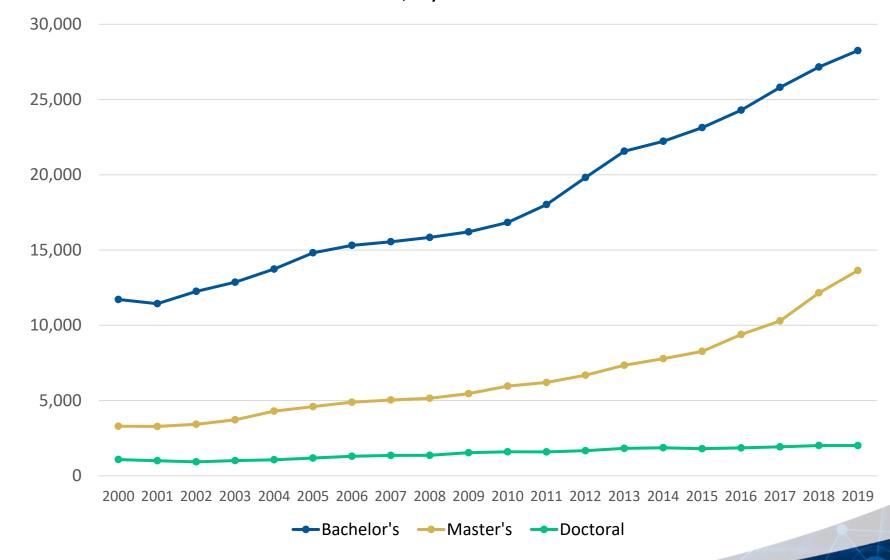
Physical sciences include earth, atmospheric, and ocean sciences.

Source(s):

Figure HED-8

National Center for Education Statistics, Integrated Postsecondary Education Data System (IPEDS), Completions Survey; National Center for Science and Engineering Statistics, Table Builder.

Science and Engineering Indicators



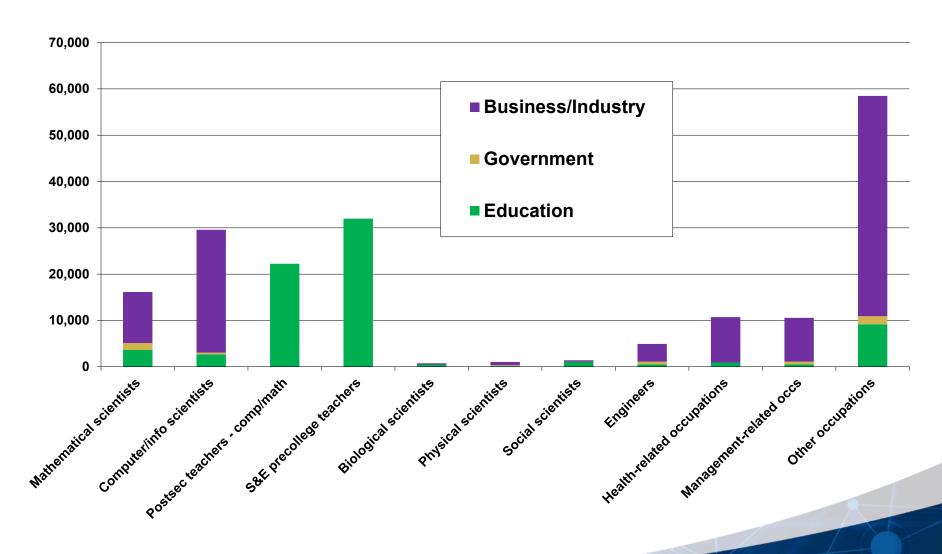
Example #8:

Trends in Degrees in Math/Stat

Combining Data

Mathematics and Statistics Degrees Awarded at U.S. Institutions, by level: 2000-2019

What are the workforce characteristics of recent bachelor's degree holders in math?



Example #9:

Math Degree Holders (35 yrs or younger) by occupation and sector: 2019

Young Math Degree Holders by Sector and Occupation

Advanced Custom Tables

Example #9: Workforce Characteristics of Recent Math Degree Holders Custom Tables

- National Center for Science and Engineering Statistics
- Explore Data

Multiple tools for different types of data

Custom table builder

- SESTAT Scientists and Engineers Statistical Data System
 - SESTAT Tutorial

Online help for table builder

- National Survey of College Graduates
- Detailed Statistical Tables

Compiled data

Biennial survey of all college graduates in the U.S.

Questions?

Nimmi Kannankutty

nkannank@nsf.gov

Thank You!

