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New Technologies for Mathematics

New reasoning technologies:

* interactive theorem proving and

formalization o
Formalization

* automated reasoning and symbolic Al

* machine learning and neural Al

Symbolic
Automated
Reasoning

Machine

Call these, collectively, “Al for Mathematics.” Learning

All three come together in neurosymbolic
theorem proving.



Overview

Al for mathematics research:

interactive theorem proving

automated reasoning and
symbolic Al

machine learning and neural Al

neurosymbolic theorem provers

Al for mathematics education:
* how Al will change mathematics
* how Al will change everything

« what we need to teach our
children

 how to teach with Al



Interactive Theorem Proving and
Formalization



Interactive Theorem Proving and Formalization

In the early 20th century, logicians developed formal axiomatic systems for
mathematics.

It soon became clear that these systems were expressive enough to formalize
most mathematics, in principle.

In the early 1970s, the first proof assistants made it possible to formalize and
verify proofs in practice.

Today, the practice is known as interactive theorem proving. Working with a
proof assistant, users construct formal definitions and proofs



Lean Community

Community

Zulip chat

GitHub

Blog

Community information
Community guidelines
Teams

Papers about Lean
Projects using Lean
Teaching using Lean
Events

Use Lean

Online version (no installation)
Install Lean
More options

Documentation

Learning resources (start here)
APl documentation
Declaration search (Loogle)
Language reference

Tactic list

Calc mode

Conv mode

Simplifier

Well-founded recursion
Speeding up Lean files

Pitfalls and common mistakes
About MWEs

Glossary

Community

Lean and its Mathematical Library

The Lean theorem prover is a proof assistant developed principally by Leonardo de Moura.

The community recently switched from using Lean 3 to using Lean 4. This website is still being updated, and some pages
have outdated information about Lean 3 (these pages are marked with a prominent banner). The old Lean 3 community
website has been archived.

The Lean mathematical library, mathlib, is a community-driven effort to build a unified library of mathematics formalized in
the Lean proof assistant. The library also contains definitions useful for programming. This project is very active, with many
regular contributors and daily activity.

You can get a bird's-eye view of what is in the mathlib library by reading the library overview, and read about recent
additions on our blog. The design and community organization of mathlib are described in the 2020 article The Lean
mathematical library, although the library has grown by an order of magnitude since that article appeared. You can also
have a look at our repository statistics to see how the library grows and who contributes to it.

Try it! Learn to Lean! Meet the

You can try Lean in your web You can learn by playing a game, COHlmllnitY!
browser, install it in an isolated following tutorials, or reading
folder, or go for the full install. books.

Lean is free, open source

Lean has very diverse and active
community. It gathers mostly on
a Zulip chat and on GitHub. You
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RieszLemma.lean > @ riesz_lemma

variable {k : Type*} [NormedField k]

variable {E : Type*} [NormedAddCommGroup E] [NormedSpace k E]
variable {F : Type*} [SeminormedAddCommGroup F] [NormedSpace R F]

/-- Riesz's lemma, which usually states that it is possible to find a

vector with norm 1 whose distance to a closed proper subspace is

arbitrarily close to 1. The statement here is in terms of multiples of

norms, since in general the existence of an element of norm exactly 1

is not guaranteed. For a variant giving an element with norm in “[1, R]", see

‘riesz_lemma of norm lt'. -/

theorem riesz lemma {F : Subspace k E} (hFc : IsClosed (F : Set E)) (hF : 3 x :
(hr : r<1) : 3 xe : E, Xe ¢ FAVY Yy EF, r * |[xe|] = [[Xe - y|] := by

classical

obtain (x, hx) : 3 x :

E, x ¢ F) {r : R}

let d := Metric.infDist x F
have hFn : (F : Set E).Nonempty := ( , F.zero mem)
have hdp : 0 < d :=

1t of le of ne Metric.infDist nonneg fun heq =>
hx ((hFc.mem iff infDist zero hFn).2 heq.symm)

let r' :=max r 271
have hr' : r' <1 := by
simp only [r', max 1t iff, hr, true and]
norm_num
have hlt : 0 < r' := 1t of 1t of le (by simp) (le max right r 2°1%)
have hdlt : d <d / r' := (lt div iffe hlt).mpr ((mul 1t iff 1t one right hdp).2 hr'")

obtain (ye, hyeF, hxye) : 3y €F, dist xy<d / r'
have x ne yo : X - yo € F := by
by contra h
have : X - yo + ye € F := F.add mem h hyoF
simp only [neg add cancel right, sub eq add neg] at this
exact hx this
refine (X - ye, X ne ye, fun y hy => le of 1t ? )
have hyey : ye + y € F := F.add mem hyeF hy

~a1 ~

:= (Metric.infDist 1t iff hFn).mp hdlt

VoD -
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Lean InfoView X

¥ RieszLemma.lean:55:4 =
¥ Tactic state it

1 goal

k : Type u 1

instt? : NormedField k

E : Type u 2

instft?! : NormedAddCommGroup E
instt : NormedSpace k E

F : Subspace k E

hFc : IsClosed tF

r: R

hr : r<1

x : E

hx : X & F

d : R := infDist x *F
hFn : (tF).Nonempty
hdp : 0 < d

r' : R :=max r 2°1
hr' : r' <1

hit : 0 < r!

hdlt : d<d/ r'
yeo : E

hyeF : yo € F

hxye : dist X ye <d / r'

F3xe €F, Yy €F, r* |xof = |xo
-yl
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FOUNDATIONS OF MATHEMATICS

Building the Mathematical Library of the
Future

W2 | N A small community of mathematicians is using a software program called
Lean to build a new digital repository. They hope it represents the future of

their field.
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Liquid tensor experiment

Posted on December 5, 2020 by xenaproject

This is a guest post, written by Peter Scholze, explaining a liquid real vector space mathematical
formalisation challenge. For a pdf version of the challenge, see here. For comments about

formalisation, see section 6. Now over to Peter.

1. The challenge

I want to propose a challenge: Formalize the proof of the following theorem.

Theorem 1.1 (Clausen-S.) Let ) < p’ < p < 1be real numbers, let S be a profinite set, and let |/
be a p-Banach space. Let M D/ (S ) be the space of p'-measures on S. Then

EXtiCond(Ab) (Mp'<5)> V) =0

forp > 1. ®8 Comment
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Introduction
1 First part

1.1 Breen—
Deligne data

1.2 Variants of
normed groups

1.3 Spaces of
convergent power
series

1.4 Some normed
homological
algebra

1.5 Completions
of locally
constant
functions

1.6 Polyhedral
lattices

1.7 Key technical
result

2 Second part

3 Bibliography
Section 1 graph
Section 2 graph

Blueprint for the Liquid Tensor Experiment

1.1 Breen—Deligne data

The goal of this subsection is to a give a precise statement of a variant of the Breen—Deligne
resolution. This variant is not actually a resolution, but it is sufficient for our purposes, and is
much easier to state and prove.

We first recall the original statement of the Breen—Deligne resolution.

Theorem(Breen—Deligne)

For an abelian group A, there is a resolution, functorial in A, of the form

e — éZ[A”i] — ... = Z[A% @ Z[A%] — Z[A?%] — Z[A] — A — 0.

What does a homomorphism f: Z[A™| — Z[A™] that is functorial in A look like? We should
perhaps say more precisely what we mean by this. The idea is that 7 and n are fixed, and for
each abelian group A we have a group homomorphism f4: Z[A™] — Z[A™] such that if

¢: A — Bis a group homomorphism inducing ¢;: Z[A'| — Z|[B?| for each natural number i
then the obvious square commutes: ¢, © f4 = fB © dm.

The map f 4 is specified by what it does to the generators (a1, as,as,...,a,) € A™. Itcan
send such an element to an arbitrary element of Z[ A™], but one can check that universality
implies that f4 will be a Z-linear combination of “basic universal maps”, where a “basic
universal map” is one that sends (a1, as,...,an) to (t1,...,t,), where ¢; is a Z-linear
combination ¢; 1 - @a; + -+ + €im * @m. S0 a “basic universal map” is specified by the

n X m-matrix c.

Definition 1.1.1 v

A basic universal map from exponent m to n, is an n x m-matrix with coefficients in Z
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Automated Reasoning and
Symbolic Al



Automated Reasoning and Symbolic Al

Even before computers were invented, logicians were interested in
algorithmic procedures to

* decide the truth of mathematical statements, and

« search for proofs.
The first automated provers appeared in the 1950s and 1960s.

Now we have
* first-order provers,
 SAT solvers, and

« SMT solvers.



SAT Solvers

A formula in propositional logic (like PvQ —QAR) is true or false depending on
the truth assignments to the variables.

A satisfiability solver determines whether a formula has a satisfying
assignment.

Modern SAT solvers can decide industrial formulas with tens of millions of
variables and hundreds of millions of clauses, often in minutes.

Recipe for mathematics:
 Encode/reduce aproblem to a SAT problem.

o Use aSAT solver.



GEOMETRY

mputer Search Settles 90-Year-Old
Math Problem

® w0 | N By translating Keller’s conjecture into a computer-friendly search for a type

of graph, researchers have finally resolved a problem about covering spaces

with tiles.




A counterexample to the
unit conjecture for group rings

By GILES GARDAM

To the memory of Willem Henskens

Abstract

The unit conjecture, commonly attributed to Kaplansky, predicts that
if K is a field and G is a torsion-free group, then the only units of the
group ring K|[G] are the trivial units, that is, the non-zero scalar multiples
of group elements. We give a concrete counterexample to this conjecture;
the group is virtually abelian and the field is order two.
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Computer Science > Computational Geometry

[Submitted on 1 Mar 2024]

Happy Ending: An Empty Hexagon in Every Set of 30 Points
Marijn J.H. Heule, Manfred Scheucher

Satisfiability solving has been used to tackle a range of long-standing open math problems in
recent years. We add another success by solving a geometry problem that originated a century ago.
In the 1930s, Esther Klein's exploration of unavoidable shapes in planar point sets in general
position showed that every set of five points includes four points in convex position. For a long
time, it was open if an empty hexagon, i.e., six points in convex position without a point inside,
can be avoided. In 2006, Gerken and Nicolas independently proved that the answer is no. We
establish the exact bound: Every 30-point set in the plane in general position contains an empty
hexagon. Our key contributions include an effective, compact encoding and a search-space
partitioning strategy enabling linear-time speedups even when using thousands of cores.



First- and Higher-Order Theorem Provers

The question as to whether a statement is provable from some hypotheses in
first-order logic is equivalent to the halting problem.

The best one cando is to design a complete proof search.

There are several such systems available.
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ors Decide
on Is Key
1ts’ Health

from the hip and lower spine, atrend
that if uncorrected over time could
prevent long space voyages.

Experts say a trip to Mars, a year
or two each way, carries the risk of
leaving an astronaut crippled upon
return. ®

“We've learned that bone loss
from selected sites on the skeleton is
a problem that we still don’t have a
solution to,”” Dr. Frank M. Sulzman,
director of life science research at
the National Aeronautics and Space
Administration, said in an interview.

But NASA and its advisers say
they are on the verge of finding what
may be a simple way to prevent a
wide range of space illnesses: noth-
ing fancy or high-tech, it boils down
to hard exercise, the orbital equiva-
lent of pumping iron.

Astronauts now tend to do endur-
ance types of exercise, including cy-
cling, rowing and walking on atread-
mill, that stress aerobics and stam-
ina. But a wide consensus is develop-
ing among space physiologists and
NASA officials that this approach is
wrong and needs to be supplemented
by strenuous workouts that increase

Built for 2

A new idea for
astronauts, a
tandem cycle,
mimics gravity and
has cams on the
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With Major Math Proof, "
Brute Computers Show
Flash of Reasoning Power

The achievement would
have been called creative
if a human had done it.

By GINA KOLATA

OMPUTERS are whizzes when it
comes to the grunt work of mathe-
matics. But for creative and ele-
gant solutions to hard mathemati-
cal problems, nothing has been able to
beat the human mind. That is, perhaps,
until now.

A computer program written by re-
searchers at Argonne National Laborato-
ry in Illinois has come up with a major
mathematical proof that would have been
called creative if a human had thought of
it. In doing so, the computer has, for the
first time, got a toehold into pure mathe-
matics, a field described by its practition-
ers as more of an art form than a science.
And the implications, some say, are pro-
found, showing just how powerful comput-
ers can be at reasoning itself, at mimick-

ing the flachas of lngical inciaht or auen humans think, the magnificent bursts of

those conjectures were easy to prove. The
difference this time is that the computer
has solved a conjecture that stumped
some of the best mathematicians for 60
years. And it did so with a program that
was designed to reason, not to solve a
specific problem. In that sense, the pro--
gram is very different from chess-playing
computer programs, for example, which
are intended to solve just one praoblem: the
moves of a chess game.

‘“It’s a sign of power, of reasoning pow-
er,” said Dr. Larry Wos, the supervisor of
the computer reasoning project at Ar-
gonne. And with this result, obtained by a
colleague, Dr. Willlam McCune, he said,
‘“We’ve taken a quantum leap forward.””

Dr. Wos predicts that the result may
mark the beginning of the end for mathe-
matics research as it is now practiced,
eventually freeing mathematicians to fo-
cus on discovering new conjectures, and
leaving the proof to computers. :

But the result also may challenge the
very notion of creative thinking, raising
the possibility that computers could take a
parallel path to reach the same conclu-
sions as great human thinkers. Or it may
be that since no one has any idea how:



Equational Theories Project

Mapping out the relations between different equational theories of Magmas

Blueprint (web) Blueprint (pdf) Paper (pdf) Documentation Dashboard Equation Explorer Finite Magma Explorer
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The purpose of this project, launched on Sep 25, 2024, is to explore the space of equational theories
of magmas, ordered by implication. To begin with we shall focus only on theories of a single equation,
and specifically on the 4694 equational laws involving at most four magma operations, up to
symmetry and relabeling (here is the list in Lean and in plain text). This creates 4694*(4694-1) =
22,028,942 implications that need to be proven or disproven, creating both “implications” and “anti-
implications”.

Graphiti



THE EQUATIONAL THEORIES PROJECT: ADVANCING
COLLABORATIVE MATHEMATICAL RESEARCH AT SCALE

MATTHEW BOLAN, JOACHIM BREITNER, JOSE BROX, MARIO CARNEIRO, MARTIN DVORAK,
ANDRES GOENS, AARON HILL, HARALD HUSUM, ZOLTAN KOCSIS, BRUNO LE FLOCH,
LORENZO LUCCIOLI, DOUGLAS MCNEIL, ALEX MEIBURG, PIETRO MONTICONE, PACE

NIELSEN, GIOVANNI PAOLINI, MARCO PETRACCI, BERNHARD REINKE, DAVID RENSHAW,
MARCUS ROSSEL, CODY ROUX, JEREMY SCANVIC, SHREYAS SRINIVAS, ANAND RAO
TADIPATRI, TERENCE TAO, VLAD TSYRKLEVICH, DANIEL WEBER, FAN ZHENG

ABSTRACT. We report on the Equational Theories Project (ETP), an online collaborative
pilot project to explore new ways to collaborate in mathematics with machine assistance.
The project successfully determined all 22028 942 edges of the implication graph between
the 4694 simplest equational laws on magmas, by a combination of human-generated and
automated proofs, all validated by the formal proof assistant language Lean. As a result of
this project, several new constructions of magmas obeying specific laws were discovered, and
several auxiliary questions were also addressed, such as the effect of restricting attention to
finite magmas.
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Machine Learning

Key approaches:

« Supervised learning: the system is presented with (input, output) pairs, and
learns a rule connecting them.

« Unsupervised learning: the system is presented with data, and learns some
sort of structure.

» Reinforcement learning: the system acts in a space and is rewarded

accordingly; it learns to maximize rewards.

Models can be very simple (linear regression, decision trees) to very complex
(neural networks).



Machine Learning and Neural Al

There are several things that machine learning and neural networks can do:

extract intuitions and detect patterns in data

compute solutions to PDEs

construct algebraic expressions

construct combinatorial objects



Machine Learning and Neural Al

Intuitions from data mining:
« knotinvariants
* representation theory

e murmurations



Article

Advancing mathematics by guiding human
intuitionwith Al
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Open access

" Check for updates

Alex Davies'™, Petar Veli¢kovié', Lars Buesing', Sam Blackwell', Daniel Zhengd',
Nenad Tomasev', Richard Tanburn', Peter Battaglia', Charles Blundell', Andras Juhasz?,
Marc Lackenby? Geordie Williamson®, Demis Hassabis' & Pushmeet Kohli'™

The practice of mathematics involves discovering patterns and using these to
formulate and prove conjectures, resulting in theorems. Since the 1960s,
mathematicians have used computers to assist in the discovery of patterns and
formulation of conjectures’, most famously in the Birch and Swinnerton-Dyer
conjecture?, aMillennium Prize Problem®. Here we provide examples of new
fundamental results in pure mathematics that have been discovered with the
assistance of machine learning—demonstrating a method by which machine learning
can aid mathematiciansindiscovering new conjectures and theorems. We propose a
process of using machine learning to discover potential patterns and relations
between mathematical objects, understanding them with attribution techniques and
using these observations to guide intuitionand propose conjectures. We outline this
machine-learning-guided framework and demonstrate its successful applicationto
current research questionsin distinct areas of pure mathematics, ineach case
showing how it led to meaningful mathematical contributions onimportantopen
problems: anew connection between the algebraic and geometric structure of knots,
and a candidate algorithm predicted by the combinatorial invariance conjecture for
symmetric groups®*. Our work may serve as a model for collaboration betweenthe
fields of mathematics and artificial intelligence (Al) that can achieve surprising results
by leveraging the respective strengths of mathematicians and machine learning.



Elliptic Curve ‘Murmurations’ Found With
Al Take Flight

6 Mathe

maticians are working to fully explain unusual behaviors uncovered

using artificial intetligence

When viewed the right way, elliptic curves can flock like birds. Paul Chaikin for Quanta Magazine



Machine Learning and Neural Al

Physics-informed neural networks (PINNs) can optimize parameters with
respect to an objective function and constraints expressed in terms of PDEs.

In particular, they can compute approximate solutions to PDEs, and search for
regions and parameter settings of interest.



Deep Learning Poised to ‘Blow Up’ Famed
Fluid Equations

. D Mvip m hem nc hav riod ) ) 1lor’ 1111
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Mathematics > Analysis of PDEs

[Submitted on 17 Sep 2025]

Discovery of Unstable Singularities

Yongji Wang, Mehdi Bennani, James Martens, Sébastien Racaniére, Sam Blackwell, Alex Matthews, Stanislav Nikolov, Gonzalo Cao-
Labora, Daniel S. Park, Martin Arjovsky, Daniel Worrall, Chongli Qin, Ferran Alet, Borislav Kozlovskii, Nenad TomaSev, Alex Davies,
Pushmeet Kohli, Tristan Buckmaster, Bogdan Georgiev, Javier Gdmez-Serrano, Ray Jiang, Ching-Yao Lai

Whether singularities can form in fluids remains a foundational unanswered question in mathematics. This phenomenon occurs when solutions to
governing equations, such as the 3D Euler equations, develop infinite gradients from smooth initial conditions. Historically, numerical approaches
have primarily identified stable singularities. However, these are not expected to exist for key open problems, such as the boundary-free Euler and
Navier-Stokes cases, where unstable singularities are hypothesized to play a crucial role. Here, we present the first systematic discovery of new
families of unstable singularities. A stable singularity is a robust outcome, forming even if the initial state is slightly perturbed. In contrast, unstable
singularities are exceptionally elusive; they require initial conditions tuned with infinite precision, being in a state of instability whereby infinitesimal
perturbations immediately divert the solution from its blow-up trajectory. In particular, we present multiple new, unstable self-similar solutions for
the incompressible porous media equation and the 3D Euler equation with boundary, revealing a simple empirical asymptotic formula relating the
blow-up rate to the order of instability. Our approach combines curated machine learning architectures and training schemes with a high-precision
Gauss-Newton optimizer, achieving accuracies that significantly surpass previous work across all discovered solutions. For specific solutions, we
reach near double-float machine precision, attaining a level of accuracy constrained only by the round-off errors of the GPU hardware. This level of
precision meets the requirements for rigorous mathematical validation via computer-assisted proofs. This work provides a new playbook for
exploring the complex landscape of nonlinear partial differential equations (PDEs) and tackling long-standing challenges in mathematical physics.

Comments: 20 pages, 6 figures. Supplementary information will be uploaded in a forthcoming version of the manuscript
Subjects: Analysis of PDEs (math.AP); Fluid Dynamics (physics.flu-dyn)
ite as: v-2509.14185 [math.AP]
9.14185v1 [math.AP] for this version)
brg/10.48550/arXiv.2509.14185 @




Machine Learning and Neural Al

Neural networks can construct algebraic and combinatorial objects:
« antiderivatives

* Lyapunov functions

* rewrite sequences in presented groups

« counterexamples in graph theory

« extremal combinatorial objects
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Computer Science > Machine Learning

[Submitted on 10 Oct 2024]

Global Lyapunov functions: a long-standing open problem
In mathematics, with symbolic transformers

Alberto Alfarano, Francois Charton, Amaury Hayat

Despite their spectacular progress, language models still struggle on complex reasoning tasks, such
as advanced mathematics. We consider a long-standing open problem in mathematics: discovering a
Lyapunov function that ensures the global stability of a dynamical system. This problem has no known
general solution, and algorithmic solvers only exist for some small polynomial systems. We propose a
new method for generating synthetic training samples from random solutions, and show that
sequence-to-sequence transformers trained on such datasets perform better than algorithmic solvers
and humans on polynomial systems, and can discover new Lyapunov functions for non-polynomial
systems.



MATHEMATICAL EXPLORATION AND DISCOVERY AT SCALE

BOGDAN GEORGIEV, JAVIER GOMEZ-SERRANO, TERENCE TAO, AND ADAM ZSOLT WAGNER

ABSTRACT. AlphaEvolve [ ']is a generic evolutionary coding agent that combines the generative capabilities of
LLMs with automated evaluation in an iterative evolutionary framework that proposes, tests, and refines algorithmic
solutions to challenging scientific and practical problems. In this paper we showcase AlphaEvolve as a tool for
autonomously discovering novel mathematical constructions and advancing our understanding of long-standing open
problems.

To demonstrate its breadth, we considered a list of 67 problems spanning mathematical analysis, combinatorics,
geometry, and number theory. The system rediscovered the best known solutions in most of the cases and discovered
improved solutions in several. In some instances, AlphaEvolve is also able to generalize results for a finite number
of input values into a formula valid for all input values. Furthermore, we are able to combine this methodology
with Deep Think [ /"] and AlphaProof [/ ] in a broader framework where the additional proof-assistants and
reasoning systems provide automated proof generation and further mathematical insights.

These results demonstrate that large language model-guided evolutionary search can autonomously discover math-
ematical constructions that complement human intuition, at times matching or even improving the best known results,
highlighting the potential for significant new ways of interaction between mathematicians and Al systems. We present
AlphaEvolve as a powerful new tool for mathematical discovery, capable of exploring vast search spaces to solve
complex optimization problems at scale, often with significantly reduced requirements on preparation and computation
time.
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The maximal length of the Erd6s—Herzog—Piranian
lemniscate in high degree

math.CV, paper Erdos, lemniscate, polynomials Terence Tao | 19
comments

I've just uploaded to the arXiv my preprint The maximal length of the Erd6s-
Herzog-Piranian lemniscate in high degree. This paper resolves (in the
asymptotic regime of sufficiently high degree) an old question about the
polynomial lemniscates

OF;(p) =1z : [p(2)| = 1}

attached to monic polynomials P of a given degree 1, and specifically the

question of bounding the arclength /(O L (p)) of such lemniscates. For
I recently explored this problem with the optimization tool AlphaEvolve, where 1
found that when I assigned this tool the task of optimizing /(0 E';(p)) for a

given degree 1, that the tool rapidly converged to choosing P to be equal to Dy
(up to the rotation and translation symmetries of the problem). This suggested
to me that the conjecture was true for all 1, though of course this was far from a
rigorous proof. AlphaEvolve also provided some useful visualization code for
these lemniscates which I have incorporated into the paper (and this blog post),
and which helped build my intuition for this problem; I view this sort of “vibe-
coded visualization” as another practical use-case of present-day Al tools.
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ABSTRACTIONS BLOG

At the Math Olympiad, Computers
Prepare to Go for the Gold

W | N Computer scientists are trying to build an Al system that can win a gold
medal at the world’s premier math competition.

i —— (o =

\ : = ! . .UUDT\‘ET
___—m—-n-' ‘ | __,4ll J

’l.l.-l au 4 *1\‘

E"l ﬁi ‘ :




SCIENCE

Al achieves silver-medal standard
solving International Mathematical
Olympiad problems

25 JULY 2024

AlphaProof and AlphaGeometry teams

< Share




Neurosymbolic Theorem Proving

» AlphaProof / AlphaGeometry earn silver medal score on 2024 IMO.

* Four systems achieve gold medal score on 2025 IMO (two formal, two
informal).

« Several open-source provers are available for Lean: DeepSeek, Kimina,
Goedel Prover, ...

* Code pilots like Claude Sonnet are helpful with formalization.

« Corporate models (OpenAl, Google) are becoming good at informal
mathematics.

« Autoformalizers and provers made available to mathematicians: Aristotle
(Harmonic), AlphaProof (Google DeepMind), Gauss (Math Inc.).
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Terence Tao
@tao@mathstodon.xyz

Over at the Erdos problem website, Al assistance is now becoming
routine. Here is what happened recently regarding Erdos problem
#367 erdosproblems.com /367 :

1. On Nov 20, Wouter van Doorn produced a (human-generated)
disproof of the second part of this problem, contingent on a
congruence identity that he thought was true, and was "sure
someoneone here is able to verify... does indeed hold".

2. A few hours later, | posed this problem to Gemini Deepthink, which
(after about ten minutes) produced a complete proof of the identity
(and confirmed the entire argument):

gemini.google.com /share/81ab5a... . The argument used some p-adic
algebraic number theory which was overkill for this problem. | then
spent about half an hour converting the proof by hand into a more
elementary proof, which | presented on the site. | then remarked that
the resulting proof should be within range of "vibe formalizing" in
Lean.

3. Two days later, Boris Alexeev used the Aristotle tool from
Harmonic to complete the Lean formalization, making sure to
formalize the final statement by hand to guard against Al exploits.
This process took two to three hours, and the output can be found at
borisalexeev.com /t /Erdos367 le...

EDIT: after making this post, | decided to round things out by making
Al literature searches on this problem, which (after about fifteen
minutes) turned up some related literature on consecutive powerful
numbers, but nothing directly relating to #367.

chatgpt.com /share/6921427d-9dc...
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EXTREMAL DESCENDANT INTEGRALS ON MODULI SPACES OF
CURVES: AN INEQUALITY DISCOVERED AND PROVED IN
COLLABORATION WITH Al

JOHANNES SCHMITT

ABSTRACT.

For the pure 1-class intersection numbers D(e) = (7, - - - T, ), on the moduli space M, ,, of
stable curves, we determine for which choices of e = (ey,...,e,) the value of D(e) becomes
extremal. The intersection number is minimal for powers of a single v-class (i.e. all e;
but one vanish), whereas maximal values are obtained for balanced vectors (le; —e;| < 1
for all 7,7). The proof uses the nefness of the -classes combined with Khovanskii—Teissier
log-concavity.

HuMAN

AUTHOR’S NOTE.

The question of finding extremal values of the 1/-intersection numbers first occurred to the
author when looking for a toy problem to explore using the software OpenEvolve [Sha25].
The conjecture that balanced exponents lead to the maximal values is a natural guess,
and was indeed discovered quickly by the tested model. To the author’s knowledge, this
optimization-style problem was novel and not covered by existing literature: it is a simple
and natural question, but somewhat orthogonal to the questions usually studied in enu-
merative geometry. After some experimental verification and presenting the conjecture to
several colleagues (who confirmed its open status), it was submitted as a problem to the
IMProofBench project [SBD*25]. This project collects research level mathematics questions
and tests them against a range of AI models. As part of this evaluation, the conjecture was
independently proven by several such models, without human intervention (see Appendix A
| for further details).

HuMmAN




Overview



Overview

Al for mathematics research:

interactive theorem proving

automated reasoning and
symbolic Al

machine learning and neural Al

neurosymbolic theorem provers

Al for mathematics education:
* how Al will change mathematics
* how Al will change everything

« what we need to teach our
children

 how to teach with Al



How Al Will Change Mathematics



Changes to Mathematical Practice

We have always been proud of the fact that mathematics relies on pure
thought.

How will the experience of doing mathematics change?

We are proud of our ability to:
e construct complex, rigorous arguments

« detect subtle patterns and connections

What will happen when Al can do these better than we can?



Access to Research Mathematics

We don't need
* expensive hardware
« large budgets

e project managers

What happens if/when mathematics requires acquiring and managing
resources?

Will this limit access to mathematical research?



The Role of Industry

Several big-tech companies and startups are working on Al for math:

« applications to coding

« applications to finance

» applications to science, engineering, and modeling
« applications to other things

 advertisement and PR

They are very good at what they do.

The goals are not necessarily aligned with research mathematics.



Access to Mathematics

New technologies offer new opportunities for learning:
* interactive systems with correction and feedback

 online communities and social media

Experience shows that taking advantage of them requires:
* money: computing resources, schools, after-school and summer activities

e connections: parents, teachers, mentors who know how to take advantage
of the technologies

Will technology lead to greater democratization or greater disparities?



How Al Will Change Everything



The Effects of Al on Cognition

Students are using corporate models to do their homework.

It’s generally easier to ask ChatGPT or Gemini to solve a problem thanto do it
ourselves.

How will this impact their lives?



The Effects of Al on Cognition

Compare to concerns about the effects of:

* iPhones and social media
* video games

e computers

e calculators

e television

|s the reliance on Al qualitatively different?



Reliability and Transparency

Generally, when we ask Al a question, we want the answer to be

* reliable,
« aligned with our interests,

 likely to help us achieve our goals.

We worry about:

« safety and security

e values and morals.

Mathematics can provide us with reasons, justification, and explanation.



Agency

Being rational is an important part of our identity.

This involves the ability to make decisions by reasoning and deliberating, alone
and with others.

If we are not careful, Al will take us out of the deliberative process: we ask a
qguestion, and we get an answer.



Agency

The solution is to make Al part of our deliberative process.

We should ask for explanations and reasons, process these ourselves, and ask
more questions.

Mathematics provides a language for precise reasoning and deliberation;
that’s what it was made for.

See my essay, “Is Mathematics Obsolete?”

(The answer is no. Mathematics is as important as ever.)



Summary

We need to think about:
* how Al affects our cognition
 how to keep Al reliable and safe

* how to make sure that Al serves our purposes



What We Need to Teach
Our Children



The Value of Mathematics

Two reasons to teach children mathematics:
* |t's meaningful to them.

e |t’suseful tothem.

Mathematics is:
e anart
* ahumanity

e ascience



The Aesthetic of Mathematics

There is a strong aesthetic component to mathematics.
It’s also a tradition that stretches back to antiquity.

Precise language and abstraction are fundamental to how to make sense of
the world, and how we communicate with one another.

New computing technologies for mathematics challenge us to think about why
mathematics is important to us, and what role we have to play going forward.



The Practical Side of Mathematics

Mathematics is fundamental to
« science and technology

* engineering and industry

« finance

« economics and policy
New reasoning technologies can do many of the things we used to do.

We need to think about what roles our children will play in the future.



Teaching with Al



Teaching Al for Mathematics

Two aspects:
« Teaching students how to use Al to do mathematics.

« Using Al to teach mathematics.

The first is easier:

« Several in the Lean community have taught courses on interactive theorem
proving.

 Marijn Heule and | have taught a course, Logic and Mechanized Reasoning.

* | don't yet know of courses that teach students to use machine learning to
solve math problems.



Lean Community

Community

Zulip chat

GitHub

Blog

Community information
Community guidelines
Teams

Papers about Lean
Projects using Lean
Teaching using Lean
Events

Use Lean

Online version (no installation)
Install Lean
More options

Documentation

Learning resources (start here)
Documentation overview

APl documentation
Declaration search (Loogle)
Language reference

Tactic list

Glossary

Did you really prove it?

About MWEs

Library overviews

Library overview
Undergraduate maths
Wiedijk's 100 theorems
1000+ theorems

Learning Lean 4

There are many ways to start learning Lean, depending on your background and taste. They are all fun and rewarding, but
also difficult and occasionally frustrating. Proof assistants are still difficult to use, and you cannot expect to become
proficient after one afternoon of learning.

All the resources listed on this page are about Lean 4. Some have Lean 3 versions, but there is no point learning Lean 3 at
this stage.

Hands-on approaches

e Whatever your background, if you want to dive right away, you can play the Natural Number Game. This is an online
interactive Lean tutorial focused on proving properties of the elementary operations on natural numbers. The Lean
Game Server hosts various learning games including Set Theory, Logic, and Robo (a story about undergrad
mathematics).

e For a faster-paced dive, you can get the Glimpse of Lean tutorial. This contains four basic files covering some
fundamental aspects of proving using Lean, and then independent topic files about elementary analysis, abstract
topology and mathematical logic.

¢ You can download the tactic cheatsheet (PDF) for a reference of most common tactics.

e |f you wish to learn directly from source, the Lean APl documentation not only includes Mathlib, but also covers Std,
Batteries, Lake, and the core compiler. As much of Lean is defined in terms of syntax extensions, this is the closest
thing to a comprehensive reference manual that exists.

e If you wish to get your hands dirty and contribute to mathlib, but don't know a good project to start out, then there is a
long list of easy issues on the GitHub Issues. If you are working on an issue, please post a reply on the GitHub issue
stating that you're working on it, to minimize duplicate effort.

Books

If you prefer reading a book (with exercises), there are a number of freely available Lean books that have proven to be useful
to beginners. These are available as HTML or PDFs, but are usually meant to be read interactively in VSCode, doing Lean
exercises on the fly:

¢ The standard mathematics-oriented reference is Mathematics in Lean. You can download it as a PDF, but see also the



Natural Number Game

Welcome to the Natural
Number Game

An introduction to mathematical proof.

In this game, we will build the basic theory of the
natural numbers {0,1,2,3,4,...} from scratch.
Our first goal is to prove that 2 + 2 = 4. Next
we'll prove that x + y = y + x.And at the end
we'll see if we can prove Fermat's Last Theorem.
We'll do this by solving levels of a computer
puzzle game called Lean.

Read this.

Learning how to use an interactive theorem
prover takes time. Tests show that the people
who get the most out of this game are those who
read the help texts like this one.

To start, click on "Tutorial World".

Note: this is a new Lean 4 version of the game
containing several worlds which were not present
in the old Lean 3 version. More new worlds such
as Strong Induction World, Even/Odd World and
Prime Number World are in development; if you
want to see their state or even help out, checkout
out the issues in the github repo.

More

Cliclk an the three linae in the tan ridht anAd calart

Tutorial World

Addition World

Multiplication World

Implication World

Advanced Addition
World

Power World Algorithm World

Rules e

regular
relaxed

none

Theorems

Tactics
|

Definitions




A Mathematics in Lean
@ / Mathematics in Lean View page source

Search docs

1. Introduction Mathematics in Lean

2. Basics

3. Logic ¢ 1. Introduction

4. Sets and Functions o 1.1. Getting Started

5. Elementary Number Theory © 1.2. Overview

6. Discrete Mathematics e 2. Basics

7o SITUEITES o 2.1. Calculating

8. Hierarchies o 2.2. Proving Identities in Algebraic Structures
9. Groups and Rings o 2.3. Using Theorems and Lemmas

0 el o 2.4. More examples using apply and rw

o 2.5. Proving Facts about Algebraic Structures
11. Topology

12. Differential Calculus * 3. Logic

3.1. Implication and the Universal Quantifier
o 3.2. The Existential Quantifier

3.3. Negation

o 3.4. Conjunction and Iff

3.5. Disjunction

0]

13. Integration and Measure Theory

Index

0]

0]

o 3.6. Sequences and Convergence
e 4, Sets and Functions

o 4.1. Sets
o 4.2. Functions

o 4.3. The Schroder-Bernstein Theorem
e 5. Elementary Number Theory

o 5.1. Irrational Roots

o 5.2. Induction and Recursion
o 5.3. Infinitely Many Primes

o 5.4. More Induction

e 6. Discrete Mathematics

o 6.1. Finsets and Fintypes



A Logic and Mechanized Reasoning

@ / Logic and Mechanized Reasoning View page source
Search docs
TENTS: Logic and Mechanized Reasoning
1. Introduction
2. Mathematical Background Contents:

3. Lean as a Programming Language e 1. Introduction

4. Propositional Logic

o 1.1. Historical background

5. Implementing Propositional Logic . .
= etz B o 1.2. An overview of this course

6. Decision Procedures for Propositional
Logic ¢ 2. Mathematical Background

7. Using SAT Solvers

o

2.1. Induction and recursion on the natural numbers

8. Proof Systems for Propositional Logic > 2.2. Complete induction

9. Using Lean as a Proof Assistant o 2.3. Generalized induction and recursion

i . o 2.4. Invariants
10. First-Order Logic .
o 2.5. Exercises

11. Implementing First-Order Logic

. . ¢ 3. Lean as a Programming Language
12. Decision Procedures for Equality

13. Equality and Induction in Lean © 3.1. About Lean

3.2. Using Lean as a functional programming langua
14. Decision Procedures for Arithmetic ’ sihg Lean as a functio programming language

> 3.3. Inductive data types in Lean
15. Using SMT solvers

o

3.4. Using Lean as an imperative programming language
16. Proof Systems for First-Order Logic o 3.5. Exercises

17. Using First-Order Theorem Provers « 4. Propositional Logic

18. Beyond First-Order Logic
o 4.1. Syntax

o 4.2. Semantics

o 4.3. Calculating with propositions
o 4.4. Complete sets of connectives
o 4.5. Normal forms

o 4.6. Exercises

¢ 5. Implementing Propositional Logic

o 5.1. Syntax
o 5.2. Semantics

o 5.3. Normal Forms



Using Al to Teach Mathematics

Using Al to teach mathematics is harder.

* The technology can become the focus, distracting from mathematics.
« Students may rely on Al, rather than learning.

* Al versions of skills may not transfer.

Positives:

* |nteraction allows students to try things and see what happens.
« There is constant feedback and correction.

« There are online user communities.

« Students enjoy it and are engaged.



A The Mechanics of Proof

Search docs

Preface

. Proofs by calculation

. Proofs with structure

. Parity and divisibility

. Proofs with structure, Il
Logic

. Induction

. Number theory

. Functions

VW O N O U A W N P

Sets
10. Relations

Index of Lean tactics

Transitioning to mainstream Lean

@ » The Mechanics of Proof View page source

The Mechanics of Proof

This is a book dealing with how to write careful, rigorous mathematical proofs. The book is paired
with code in the computer formalization language Lean. Head over to the associated GitHub
repository, https:/github.com/hrmacbeth/math2001, to download this code to your own computer
or to open it in the cloud on Gitpod.

This book is aimed at the early university level and has been written for the course Math 2001, at
Fordham University. Please reach out to the author, Heather Macbeth, with comments and
corrections.

e Preface

o About this book

o Why Lean?

o Contents and prerequisites
o Note for instructors

o Acknowledgements

¢ 1. Proofs by calculation

o 1.1. Proving equalities

o 1.2. Proving equalities in Lean
o 1.3. Tips and tricks

1.4. Proving inequalities

o 1.5. Ashortcut

e}

e 2. Proofs with structure

> 2.1. Intermediate steps
> 2.2. Invoking lemmas

o 2.3.“Or" and proof by cases
o 2.4.“And”
o 2.5. Existence proofs

o 3. Parity and divisibility

-~ a4 em & ea0



Verbose Lean 4

This project provides tactics and commands for Lean in a very controlled natural language. The original version of
those tactics were written in French for teaching purposes at Université Paris-Saclay in Orsay using Lean 3. The goal is
not to make Lean code easier to write, the goal is to make Lean code easier to transfer to a traditional paper proof.

The best way to have a quick look is to read the examples file in English or French, although GitHub obviously misses
proper syntax highlighting here.

There is also a point-and-click interface for courses with a low time budget. One can see it in the following animated
gif.

SO

import Verbose.English.ExamplelLib
import Verbose.English.Statements

¥ Tactic state « L v

1 goal
. . . f:R>R
set_option verbose.suggestion_widget true I B: nuoR
Exercise "Continuity implies sequential continuity" I):u :} converges to Xo
Given: (f : R> R) (U : N3 R) (xo : R) hf: f is continuous at xo
Assume: (hu : u converges to x,) (hf : f is continuous at x,) £ R
Conclusion: (f - u) converges to f X, e pos: € >0
Proof: 5: R
Let's prove that v € >0, 3 N, vn2N, |[(f-u)n-fFfx <c¢ 5_pos: 5> 0
Fix e > 0 _ — WV (x:R), Ix-xXl 8> fx-fxlc<e
By hf applied to £ using that € > 0 we get & such that (8_pos : & > 0) (hd : ¥V (x : R), Ix - xol €83 |fx - f xol <€) N: N
By hu applied to & using that & > O we get N such that hN : ¥ n 2 N, Jun - xo| €3 AN: ¥ n2N, Jun- x| <38
Let's prove that N works: ¥ n 2 N, [(f - u) n - f xo| € ¢ i: w
Fix n 2 N nge:nz2N
By hN applied to n using that n 2 N we get H : Jun - Xo| €5 H:Jun - xo] <8
FI(F =u)n-f x|l €€
sorry
QED ¥ Suggestions

» Messages (1)

» All Messages (1) 1l



Real Analysis, The Game

Welcome to Real Analysis,
The Game! (v0.1)

This course is was developed for Rutgers
University Math 311H by Alex Kontorovich.

Follow along with the course lecture notes and
videos, available here:
https://alexkontorovich.github.io/2025F311H.

This course takes you through an Introduction to
the Real Numbers, rigorous ¢ - 6 Calculus, and
basic Point-Set Topology. To get started, click on
"Level 1: The Story of Real Analysis", and good
luck!

Lecture 1: The Story of
Real Analysis

Lecture 2: Newton's
Computation of m

Lecture 3: More fun
with Sequences

Rules e
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Teaching with Al

We're in the Wild West.

We need collaborations between:

mathematicians,
computer scientists,
educators,

education researchers,

and more.



Institute for Computer-Aided
Reasoning in Mathematics

{3

&

icarm.io




A New Institute

The Institute for Computer-Aided Reasoning in Mathematics (ICARM) is a pilot
NSF MSRI on the campus of Carnegie Mellon University.

lts mission is to

* empower mathematicians to take advantage of new technologies for
mathematical reasoning and keep mathematics central to everything we do;

* unite mathematicians of all kinds, computer scientists, students, and
researchers to achieve that goal; and

* ensure that mathematics and the new technologies are accessible to
everyone.



Conclusions



Conclusions

Al will change:
* the way we do mathematics

« the way we do everything

We need to think about:
* why we do mathematics
 what we need to teach our children

 howtodoit

It’s an exciting time for mathematics, but we need to be careful.



